
TetraFET

D1204UK

ROHS COMPLIANT METAL GATE RF SILICON FET

MECHANICAL DATA

PIN 1 SOURCE (COMMON) PIN 2 GATE

PIN 3 SOURCE (COMMON) PIN 4 SOURCE (COMMON)

PIN 5 DRAIN

DIM	mm	Tol.	Inches	Tol.
Α	6.35 DIA	0.13	0.250 DIA	0.005
В	3.17 DIA	0.13	0.125 DIA	0.005
С	18.41	0.25	0.725	0.010
D	5.46	0.13	0.215	0.005
Е	5.21	0.13	0.205	0.005
F	7.62	MAX	0.300	MAX
G	21.59	0.38	0.850	0.015
Н	3.94	0.13	0.155	0.005
-	12.70	0.13	0.500	0.005
J	0.13	0.03	0.005	0.001
Κ	24.76	0.13	0.975	0.005
М	2.59	0.13	0.102	0.005
Ν	4.06	0.25	0.160	0.010

GOLD METALLISED MULTI-PURPOSE SILICON

DMOS RF FET 30W – 12.5V – 175MHz SINGLE ENDED

FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW C_{rss}
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

APPLICATIONS

• HF/VHF/UHF COMMUNICATIONS from 1 MHz to 200 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

P _D	Power Dissipation	117W
BV _{DSS}	Drain – Source Breakdown Voltage	40V
BV _{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current	30A
T _{stg}	Storage Temperature	–65 to 150°C
Тj	Maximum Operating Junction Temperature	200°C

Parameter		Test C	Min.	Тур.	Max.	Unit	
B\/	Drain–Source	V _{GS} = 0	I _D = 100mA	40			V
BV _{DSS}	Breakdown Voltage	VGS – U		40			v
	Zero Gate Voltage	V _{DS} = 12.5V	$V_{GS} = 0$			1	mA
DSS	Drain Current	VDS - 12.3V	VGS – U			I	
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	$V_{DS} = 0$			1	μΑ
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 3A	2.4			S
G _{PS}	Common Source Power Gain	P _O = 30W		10			dB
η	Drain Efficiency	V _{DS} = 12.5V	I _{DQ} = 0.6A	50			%
VSWR	Load Mismatch Tolerance	f = 175MHz		20:1			_
C _{iss}	Input Capacitance	$V_{DS} = 0$ V	$G_{GS} = -5V \text{ f} = 1MHz$			180	pF
C _{oss}	Output Capacitance	V _{DS} = 12.5V V	$f_{GS} = 0$ f = 1MHz			120	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 12.5V V	$f_{GS} = 0$ f = 1MHz			12	pF

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

* Pulse Test: Pulse Duration = $300 \ \mu s$, Duty Cycle $\leq 2\%$


HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 1.5°C / W
-----------------------	------------------------------------	----------------

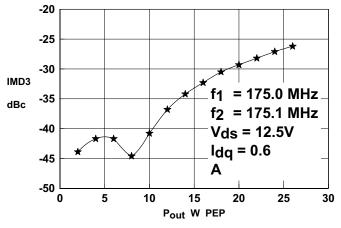


Figure 3 - IMD vs Power Output

D1204UK

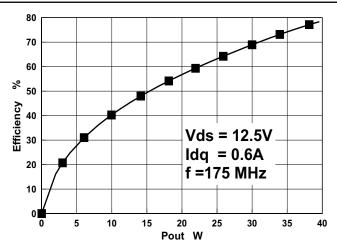


Figure 2 - Efficiency vs Power Output

OPTIMUM SOURCE AND LOAD IMPEDANCE

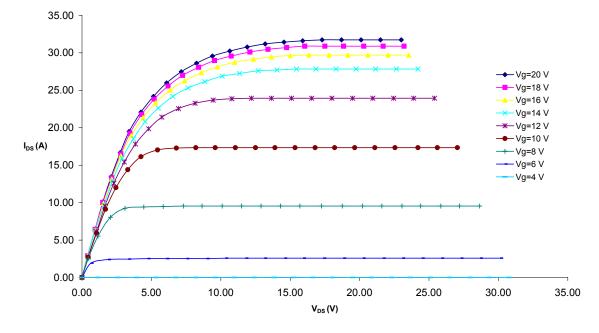
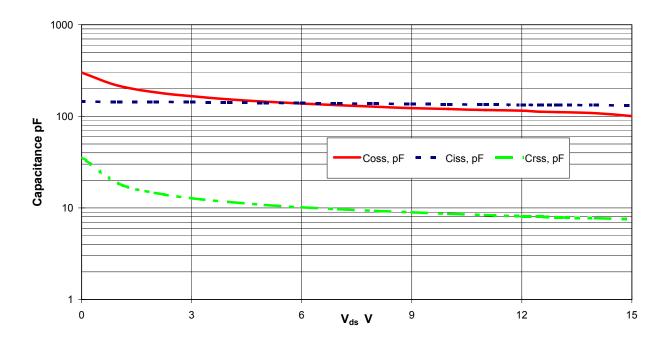
Frequency	Z _S	ZL		
MHz	Ω	Ω		
175	2.2 + j3.8	1.4 - j1.8		

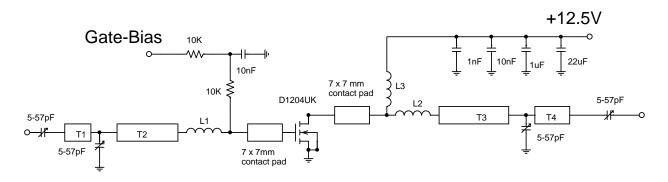
Typical S Parameters

! V_{DS} = 12.5V, I_{DQ} = 0.6A # MHZ S MA R 50

Freq	S11		S21		S12		S22	
MHz	mag	ang	mag	ang	mag	ang	mag	ang
50	0.78	-167.2	17.2	76.0	0.011	0.0	0.72	-164.2
100	0.82	-171.7	7.7	57.9	0.008	3.9	0.78	-167.6
150	0.87	-174.9	4.5	44.5	0.006	31.6	0.84	-170.3
200	0.90	-178.2	2.9	34.2	0.008	63.1	0.88	-173.3
250	0.93	178.6	2.0	26.2	0.012	75.9	0.91	-176.2
300	0.94	175.4	1.5	19.9	0.016	79.6	0.93	-178.9
350	0.96	172.5	1.1	14.8	0.020	80.1	0.95	178.5
400	0.96	169.6	0.9	10.5	0.025	79.2	0.96	176.1
450	0.97	166.9	0.7	7.1	0.029	77.7	0.97	173.8
500	0.97	164.3	0.6	4.2	0.033	76.0	0.97	171.7

D1204UK


Figure 4 – Typical IV Characteristics.

D1204UK

D1204UK 175MHz TEST FIXTURE

Substrate 1.6mm PTFE/glass, Er=2.5

All microstrip lines W=4.4mm

- T1 8mm
- T2 22mm
- T3 18mm
- T4 4.5mm
- L1 Hairpin loop 16swg 15.5mm dia
- L2 Hairpin loop 16swg 10mm dia
- L3 11 turns 18swg enamelled copper wire, 10mm i.d.